The Comparative Effectiveness of RSI and MACD Indicators in Managing Stock Price Volatility of Indonesian State-Owned Banks in 2024

Authors

  • Sunarto Sunarto University of Pamulang
  • Irenne Putren University of Pamulang
  • Yunita Kwartarani University of Pamulang
  • Islam Ali Akbar University of Pamulang
  • Siti Aisyah Nurrizqi University of Pamulang
  • Holiawati Holiawati University of Pamulang

DOI:

https://doi.org/10.55538/ifr.v5i2.114

Keywords:

RSI, MACD, Stock Volatility, Technical Analysis, SOE

Abstract

This study investigates the effectiveness of the Relative Strength Index (RSI) and Moving Average Convergence Divergence (MACD) in mitigating stock price volatility in Indonesian state-owned banks (BUMN) during 2024. Using a quantitative approach with daily secondary data, panel data regression with a Fixed Effect Model (FEM) was employed, supported by classical assumption tests, t-tests, and F-tests. The findings show that RSI and MACD each have a significant positive effect on stock prices, and together explain 98.45% of price movements. RSI effectively identifies overbought and oversold conditions, signaling potential corrections, while MACD consistently captures trend momentum and reversals. The integration of both indicators provides a more robust analytical framework for anticipating volatility and optimizing investment decisions. This study enriches technical analysis literature by highlighting the complementary roles of RSI and MACD in strengthening decision-making strategies amid market uncertainty in emerging capital markets.

References

Appel, G. (2005). Technical Analysis: Power Tools for Active Investors. Financial Times Press.

Arul Pradana. (2024). Pengaruh Kepemilikan Institusional terhadap Volatilitas Imbal Hasil Saham Perusahaan di Periode Pemilu 2024. Universitas Indonesia, Depok.

Chio, P. T. (2022). A comparative study of MACD-based trading strategies: Evidence from the US stock market. arXiv. https://arxiv.org/abs/2206.12282

Deep, A., Monico, C., Shirvani, A., Rachev, S., & Fabozzi, F. J. (2024). Assessing the impact of technical indicators on machine learning-based high-frequency stock price prediction. arXiv

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383–417.

Fitria, N., & Maulana, A. (2021). Pengaruh indikator teknikal RSI dan MACD terhadap keputusan investasi pada saham sektor perbankan di BEI. Jurnal Manajemen dan Keuangan, 9(2), 112–125.

Handayani, R., & Putra, Y. (2022). Volatilitas harga saham dan implikasinya terhadap risiko investasi di pasar modal Indonesia. Jurnal Ekonomi dan Bisnis, 15(1), 45–59.

Kang, B. K., Kim, K., & Lee, J. (2023). Optimal and non-optimal MACD parameter values and their impact on returns. Journal of Risk and Financial Management, 16(12), 508. https://doi.org/10.3390/jrfm16120508

Lestari, D., & Pratama, I. (2023). Analisis efektivitas indikator teknikal dalam memprediksi volatilitas saham LQ45. Jurnal Pasar Modal Indonesia, 8(3), 77–92

Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management, 30(5), 15–29.

Melda. (2025). Analysis of the effectiveness of RSI and MACD indicators in addressing stock price volatility. ResearchGate Working Paper. https://www.researchgate.net/publication/392317792

Mokhtari, S. M., Ghasemzadeh, F., & Amiri, A. (2021). Effectiveness of artificial intelligence in stock market prediction based on technical analysis. arXiv. https://arxiv.org/abs/2107.01031

Mostafavi, S. M., Shahrabi, J., & Zolfaghari, S. (2025). Key technical indicators for stock market prediction. Finance Research Letters. https://doi.org/10.1016/j.frl.2025.104857

Rahmawati, A. (2024). Analisis Teknikal Pasar Saham Indonesia. Jakarta: Rajawali Pers.

Rahmawati, A., & Santoso, B. (2024). Analisis efektivitas indikator RSI dan MACD terhadap volatilitas harga saham pada sektor perbankan di Bursa Efek Indonesia. Jurnal Manajemen Keuangan Universitas Indonesia, 12(2), 45–60.

Santoso, B. (2022). Strategi Trading dengan Indikator Modern. Bandung: Alfabeta.

Saputra, R. A., Nugraha, A., & Pratama, R. (2023). Stock prediction system using technical indicators with LSTM and MACD/RSI. International Journal of Online and Biomedical Engineering, 19(2), 112–126. https://doi.org/10.3991/ijoe.v19i02.37741

Sari, M., & Nugroho, T. (2025). Kepemilikan institusional dan volatilitas saham: Studi pada perusahaan keuangan Indonesia. Jurnal Ilmiah Akuntansi dan Keuangan, 19(1), 33–47.

Saud, A. S., Al-Khatib, R. M., & Qasim, A. (2024). Technical indicator empowered intelligent strategies to stock trading. Engineering Applications of Artificial Intelligence, 129, 107482. https://doi.org/10.1016/j.engappai.2024.107482

Shi, Z., Li, X., & Wang, Y. (2022). Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction. arXiv. https://arxiv.org/abs/2204.02623

Sutrisno. (2023). Manajemen Keuangan Modern. Yogyakarta: UPP STIM YKPN.

Tandelilin, E. (2023). Pasar Modal dan Manajemen Portofolio. Yogyakarta: Kanisius.

Wilder, J. W. (1978). New Concepts in Technical Trading Systems. Greensboro: Trend Research.

Ziet, Al. (2023). A Comparative Study between RSI and MACD to predict opportunities in cryptocurrency market from 2020 to 2022. ???? ???? ?????? ??????????, 26(2), 195-214. https://asjp.cerist.dz/en/article/235414

Downloads

Published

2025-12-30

How to Cite

Sunarto, S., Putren, I. ., Kwartarani, Y. ., Akbar, I. A. ., Nurrizqi, S. A. ., & Holiawati, H. (2025). The Comparative Effectiveness of RSI and MACD Indicators in Managing Stock Price Volatility of Indonesian State-Owned Banks in 2024. Indonesian Financial Review, 5(2), 466–483. https://doi.org/10.55538/ifr.v5i2.114

Issue

Section

Articles

Most read articles by the same author(s)